
Soumik Purkayastha (soumikp@umich.edu)

Linear algebra review
(mostly matrices)
1. Linear regression
2. Principal component analysis

mailto:soumikp@umich.edu

2024 Big Data Summer Institute, Ann Arbor.

Linear algebra review
(mostly matrices)
1. Linear regression [transpose and invert matrices]
2. Principal component analysis [eigen-things of matrices]

To prepare for the class, I watched these two videos [~ 25 minutes]

Start here and watch until 18:47!Start here and watch until 18:47!

Please watch the whole thing!Please watch the whole thing!

Key things to look out for:
- linear transformations
- matrix multiplication
- matrices and linear equations

Key things to look out for:
- PCA involves projections
- eigenproblem in PCA
- dimension reduction

https://youtu.be/ZTt9gsGcdDo?si=7A-mfWCGlcZBcd32&t=144
https://youtu.be/ZTt9gsGcdDo?si=Ewdg7hhYU5yw0evm&t=1128
https://www.youtube.com/watch?v=ZTt9gsGcdDo
https://www.youtube.com/watch?v=FD4DeN81ODY

Agenda
On June 25 we’ll be talking about…

1. Dataset: Diagnostic Wisconsin Breast Cancer Database

2. Linear regression
1. Writing data in matrix form

2. Estimation and inference using matrix algebra

3. Principal component analysis
1. Why bother with PCA?

2. Implementation using matrix algebra

Dataset: Breast Cancer Wisconsin (Diagnostic)
Biomedical dataset with 569 patients and 30 features

1. Dataset Composition: 569 patients with digitized images of breast mass.

2. Features: radius, texture, perimeter, area, smoothness, compactness,
concavity, concave points, symmetry, and fractal dimension of the cell
nuclei.

3. Classes: either malignant (212 cases) or benign (357 cases).

Aim: distinguish between malignant and benign breast cancer cases based on features.

Load required libraries
library(tidyverse)
library(caret)
library(ggplot2)

Load the dataset
url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data"
columns <- c('ID', 'Diagnosis', paste0('feature_', 1:30))
bc_data <- read.csv(url, header = FALSE, col.names = columns)

view(bc_data)

Load required libraries
library(tidyverse)
library(caret)
library(ggplot2)

Load the dataset
url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data"
columns <- c('ID', 'Diagnosis', paste0('feature_', 1:30))
bc_data <- read.csv(url, header = FALSE, col.names = columns)

view(bc_data)

You Should Know:

1.How many rows, how many columns?

2.What does each row signify?

3.What does each column signify?

“linear regression is simple math”

Linear regression
Data in matrix form

 = +

1. is the vector of target values (dependent variable)

2. is the matrix of input features (covariates)

3. is the vector of coefficients (weights)

4. is the vector of errors (residuals)

.

.

Y Xβ ϵ

Y
X
β
ϵ

Y1 = β0 + β1X11 + … + βpXp1 + ϵ1
Y2 = β0 + β1X12 + … + βpXp2 + ϵ2

Yn = β0 + β1X1n + … + βpXpn + ϵnn: number of patients

p: number of features

Linear regression
Data in matrix form

1. is the vector of target values (dependent variable)

2. is the matrix of input features (covariates)

3. is the vector of coefficients (weights)
4. is the vector of errors (residuals)

Y = Xβ + ϵ

Y
X
β
ϵ

Y =

y1
y2
⋮
yn

, X =

1 x11 x12 ⋯ x1p

1 x21 x22 ⋯ x2p

⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 ⋯ xnp

, β =

β0

β1
⋮
βp

, ϵ =

ϵ1
ϵ2
⋮
ϵn

create a 4*4 matrix
x <- matrix(rpois(16, 5), ncol = 4)
view(x)

transpose of matrix
t(x)

inverse of matrix
solve(x)

You Should Know:

1. Transpose of a matrix

2. Inverse of a matrix

Linear regression
Estimation

, .

Step 1: estimation and inference for

Step 2: predictions

 is the projection matrix.

Step 3: residuals

 is the annihilator matrix.

Y = Xβ + ϵ 𝕍(ϵ) = σ2

β
̂β = (XtX)−1(XtY)

̂Y = X(XtX)−1(XtY) = PXY

PX = X(XtX)−1Xt

e = ̂ϵ = Y − ̂Y = (I − PX)Y

I − PX

Linear regression
Estimation

, .

Step 1: estimation and inference for

Step 2: predictions

 is the projection matrix.

Step 3: residuals

 is the annihilator matrix.

Y = Xβ + ϵ 𝕍(ϵ) = σ2

β
̂β = (XtX)−1(XtY)

̂Y = X(XtX)−1(XtY) = PXY

PX = X(XtX)−1Xt

e = ̂ϵ = Y − ̂Y = (I − PX)Y

I − PX

STEP 1

Load required libraries
library(tidyverse)

Set seed for reproducibility
set.seed(48103)

Generate synthetic data of size 100
true Y = 3 + 2*X
epsilon variance = 4

n <- 100
x <- runif(n, min = 0, max = 10)
y <- 3 + 2 * x + rnorm(n, mean = 0, sd = 2)

STEP 2

Create a data frame
data <- tibble(x = x, y = y)

Plot the data points
ggplot(data, aes(x = x, y = y)) +
 geom_point() +
 labs(
 title = "Data Points",
 x = "Input Features (x)",
 y = "Target Values (y)"
) +
 theme_minimal()

STEP 1

Load required libraries
library(tidyverse)

Set seed for reproducibility
set.seed(48103)

Generate synthetic data of size 100
true Y = 3 + 2*X
epsilon variance = 4

n <- 100
x <- runif(n, min = 0, max = 10)
y <- 3 + 2 * x + rnorm(n, mean = 0, sd = 2)

STEP 2

Create a data frame
data <- tibble(x = x, y = y)

Plot the data points
ggplot(data, aes(x = x, y = y)) +
 geom_point() +
 labs(
 title = "Data Points",
 x = "Input Features (x)",
 y = "Target Values (y)"
) +
 theme_minimal()

STEP 3

Matrix X, add column of ones for intercept
X <- cbind(1, data$x)

Create the vector Y
Y <- data$y

Estimate the coefficient beta
B <- solve(t(X) %*% X) %*% t(X) %*% Y

Print the coefficients
B

STEP 4

Predicted values
data <- data %>% mutate(y_pred = X %*% B)

Plot the data points and the regression line
ggplot(data, aes(x = x)) +
 geom_point(aes(y = y)) +
 geom_point(aes(y = y_pred), color = "red") +
 geom_line(aes(y = y_pred), color = "blue")

Obtaining estimated coefficients
Plotting fitted values
Plotting regression line

STEP 3

Matrix X, add column of ones for intercept
X <- cbind(1, data$x)

Create the vector Y
Y <- data$y

Estimate the coefficient beta
B <- solve(t(X) %*% X) %*% t(X) %*% Y

Print the coefficients
B

STEP 4

Predicted values
data <- data %>% mutate(y_pred = X %*% B)

Plot the data points and the regression line
ggplot(data, aes(x = x)) +
 geom_point(aes(y = y)) +
 geom_point(aes(y = y_pred), color = "red") +
 geom_line(aes(y = y_pred), color = "blue")

STEP 5

Calculate residuals
data <- data %>%
mutate(residual = y - y_pred)

Plot residuals
ggplot(data,
aes(x = x, y = residual)) +
 geom_point() +
 geom_hline(yintercept = 0,
linetype = "dashed", color =
"red") +
 labs(
 title = "Residuals",
 x = "Input Features (x)",
 y = "Residuals"
)

Obtaining and plotting the residuals

STEP 5

Calculate residuals
data <- data %>%
mutate(residual = y - y_pred)

Plot residuals
ggplot(data,
aes(x = x, y = residual)) +
 geom_point() +
 geom_hline(yintercept = 0,
linetype = "dashed", color =
"red") +
 labs(
 title = "Residuals",
 x = "Input Features (x)",
 y = "Residuals"
)

, .

Step 1: estimation and inference for

Step 2: predictions

 is the projection matrix.

Step 3: residuals

 is the annihilator matrix.

Y = Xβ + ϵ 𝕍(ϵ) = σ2

β
̂β = (XtX)−1(XtY)

̂Y = X(XtX)−1(XtY) = PXY

PX = X(XtX)−1Xt

e = ̂ϵ = Y − ̂Y = (I − PX)Y

I − PX

Everything is simpler in R!
Use lm instead of matrix algebra

lm(y ~ x, data = data)

Call:
lm(formula = y ~ x, data = data)

Coefficients:
(Intercept) x
 2.896 2.027

lm(y ~ x, data = data)$fitted

lm(y ~ x, data = data)$residuals

regression of feature_1 using feature_2
lm(feature_1 ~ feature_2, data = bc_data)

plot of fitted regression line
bc_data %>%
 ggplot(aes(x = feature_2, y = feature_1)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE,
color = "red")

feature1 = β0 + β1feature2 + ϵ

regression of feature_1 using feature_2
lm(feature_1 ~ feature_2, data = bc_data)

plot of fitted regression line
bc_data %>%
 ggplot(aes(x = feature_2, y = feature_1)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE,
color = "red")

> lm(feature_1 ~ feature_2, data = bc_data)

Call:
lm(formula = feature_1 ~ feature_2, data = bc_data)

Coefficients:
(Intercept) feature_2
 9.0099 0.2653

A nice segue for principal components analysis…

A nice segue for principal components analysis…

Helping OpenAI train their models better :)

A nice segue for principal components analysis…

Introduction to PCA

1. Statistical technique used for dimensionality reduction.

2. Transforms the data into a new and “better” coordinate system.

A. Are there emerging patterns in the data?

B. What variables are “important” in the new system?

3. How “good” is this new coordinate system anyway?

data

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features

Using 30 features classify into malignant/benign class

set.seed(48103)

as_tibble(bc_data) %>%
 mutate(Diagnosis = factor(case_when(Diagnosis == 0 ~ “B”,
 Diagnosis == 1 ~
“M"),
 levels = c("B", “M"),
 labels = c("Benign", "Malignant"))) %>%
 ggplot(aes(x = feature_8, color = Diagnosis)) +
 geom_density(aes(fill = Diagnosis), alpha = 0.2) +
 geom_jitter(aes(y = 0, pch = Diagnosis), size = 1) +
 scale_color_aaas() +
 scale_fill_aaas() +
 theme_bw() +
 theme(legend.position = "bottom") +
 labs(y = "Density curves for feature_8")

set.seed(48103)

as_tibble(bc_data) %>%
 mutate(Diagnosis = factor(case_when(Diagnosis == 0 ~ “B”,
 Diagnosis == 1 ~
“M"),
 levels = c("B", “M"),
 labels = c("Benign", "Malignant"))) %>%
 ggplot(aes(x = feature_8, color = Diagnosis)) +
 geom_density(aes(fill = Diagnosis), alpha = 0.2) +
 geom_jitter(aes(y = 0, pch = Diagnosis), size = 1) +
 scale_color_aaas() +
 scale_fill_aaas() +
 theme_bw() +
 theme(legend.position = "bottom") +
 labs(y = "Density curves for feature_8") +
 geom_vline(xintercept = 0.0485, linetype = "dashed",
 size = 1, color = "black")

as_tibble(bc_data) %>%
 mutate(Diagnosis = factor(case_when(Diagnosis == 0 ~ “B”,
 Diagnosis == 1 ~
“M"),
 levels = c("B", “M"),
 labels = c("Benign", "Malignant"))) %>%
 ggplot(aes(x = feature_8, y = feature_7,
 color = Diagnosis)) +
 geom_point(aes(pch = Diagnosis), size = 2) +
 scale_color_aaas() +
 scale_fill_aaas() +
 theme_bw() +
 theme(legend.position = "bottom") +
 labs(y = "feature_7", x = "feature_8")

as_tibble(bc_data) %>%
 mutate(Diagnosis = factor(case_when(Diagnosis == 0 ~ “B”,
 Diagnosis == 1 ~
“M"),
 levels = c("B", “M"),
 labels = c("Benign", "Malignant"))) %>%
 ggplot(aes(x = feature_8, y = feature_7,
 color = Diagnosis)) +
 geom_point(aes(pch = Diagnosis), size = 2) +
 scale_color_aaas() +
 scale_fill_aaas() +
 theme_bw() +
 theme(legend.position = "bottom") +
 labs(y = "feature_7", x = “feature_8") +
 geom_segment(aes(x = 0, xend = 0.05, y = 0.1, yend = 0.1),
 color = "green", size = 2,
 linetype = "dashed") +
 geom_segment(aes(x = 0.05, xend = 0.05, y = 0, yend =
0.1),
 color = "green", size = 2,
 linetype = "dashed")

as_tibble(bc_data) %>%
 mutate(Diagnosis = factor(case_when(Diagnosis == 0 ~ “B”,
 Diagnosis == 1 ~
“M"),
 levels = c("B", “M"),
 labels = c("Benign", "Malignant"))) %>%
 ggplot(aes(x = feature_8, y = feature_7,
 color = Diagnosis)) +
 geom_point(aes(pch = Diagnosis), size = 2) +
 scale_color_aaas() +
 scale_fill_aaas() +
 theme_bw() +
 theme(legend.position = "bottom") +
 labs(y = "feature_7", x = “feature_8") +
 geom_segment(aes(x = 0, xend = 0.05, y = 0.1, yend = 0.1),
 color = "green", size = 2,
 linetype = "dashed") +
 geom_segment(aes(x = 0.05, xend = 0.05, y = 0, yend =
0.1),
 color = "green", size = 2,
 linetype = "dashed")

More than three dimensions? :(

1. Do “similar” patients cluster together? (Benign/malignant)
2. Which original variable(s) are most useful when forming clusters?
3. How reliable is this new PCA approach?

PCA will help us “reduce dimensionality”

PCA in two variables: step 1
Make life easier: center and scale

Intuition: Data points are in the same “relative” position as before, should not hurt clustering

Introduction to PCA

1. Statistical technique used for dimensionality reduction.

2. Transforms the data into a new and “better” coordinate system.
A. Are there emerging patterns in the data?

B. What variables are “important” in the new system?

3. How “good” is this new coordinate system anyway?

data

Returning to…

PCA in two variables: step 2
Create “new coordinate system”

Must create a new pair of axes.
Which axes to pick?

PCA in two variables: step 2
Create “new coordinate system”

Must create a new pair of axes.
Which axes to pick?

Fix a point and calculate
perpendicular distance of point from
a given line

⋆

PCA in two variables: step 2
Create “new coordinate system”

Must create a new pair of axes.
Which axes to pick?

Pick that line which has the least
distance from all points (not just)
to the line.

⋆

Fix a point and calculate
perpendicular distance of point from
a given line

⋆

PCA in two variables: step 3
Complete “new coordinate system”

The first “good” line is the first PC,
or . PC1

Repeat the line-finding process
again, excluding to obtain .

 will ALWAYS be perpendicular
to

PC1 PC2

PC2
PC1

PCA in two variables: step 3
Complete “new coordinate system”

The first “good” line is the first PC,
or . PC1

Repeat the line-finding process
again, excluding to obtain .

 will ALWAYS be perpendicular
to

PC1 PC2

PC2
PC1

Finally: rotate to avoid neck pain :)

Okay, got the PCs
Now what??

 and identify the directions along which the
variation in the data is maximal.

Reduces the dimensionality of the data while
retaining most of the variation.

PC1 PC2

We just used eigenthings to find PCs!

Eigenthings of matrices
Eigenvalues and eigenvectors

y = Ax

matrix

vector

Multiplying vector with matrix will give changed vector x A y

Linear transforming vector with matrix will give vector x A y

Eigenthings of matrices
Eigenvalues and eigenvectors

For a square matrix , and a (non-zero) vector where the matrix is
used to transform to : .

If is a scaled version of (for some scalar), then we can say:

 

“ is an eigenvector of and is the corresponding eigenvalue”

For a square matrix we have eigenvalue+eigenvector pairs.

A x A
x y y = Ax

y x y = λx λ

x A λ

p × p p

Eigenthings of matrices
Eigenvalues and eigenvectors

For a square matrix , and a (non-zero) vector where the matrix is
used to transform to : .

If is a scaled version of (for some scalar), then we can say:

 

“ is an eigenvector of and is the corresponding eigenvalue”

For a square matrix we have eigenvalue+eigenvector pairs.

A x A
x y y = Ax

y x y = λx λ

x A λ

p × p p

Eigenthings of matrices
Eigenvalues and eigenvectors

For a square matrix , and a (non-zero) vector where the matrix is
used to transform to : .

If is a scaled version of (for some scalar), then we can say:

 

“ is an eigenvector of and is the corresponding eigenvalue”

For a square matrix we have eigenvalue+eigenvector pairs.

A x A
x y y = Ax

y x y = λx λ

x A λ

p × p p
If you give me a ‘good’ matrix, I can give you it’s eigenthings using singular value decomposition (SVD)

Okay, got the PCs
Now what??

PCs of the data are related to the
eigenthings of the correlation matrix.

Okay, got the PCs
Now what??

PCs of the data are related to the
eigenthings of the correlation matrix.

Remember we scaled and centered our data?
All means zero, all variances 1. Only correlations remain :)

Okay, got the PCs
Now what??

 and identify the directions along which the variation in the data is maximal.

Variance of = largest eigenvalue and direction of : corresponding eigenvector
Variance of = second-largest eigenvalue and direction of : corresponding eigenvector

PC1 PC2

PC1 λ1 PC1 w1
PC2 λ2 PC2 w2

PCs of the data are related to the
eigenthings of the correlation matrix.

Remember we scaled and centered our data?
All means zero, all variances 1. Only correlations remain :)

Okay, got the PCs
Now what??

 and identify the directions along which the variation in the data is maximal.

Variance of = largest eigenvalue and direction of : corresponding eigenvector
Variance of = second-largest eigenvalue and direction of : corresponding eigenvector

PC1 PC2

PC1 λ1 PC1 w1
PC2 λ2 PC2 w2

PCs of the data are related to the
eigenthings of the correlation matrix.

Remember we scaled and centered our data?
All means zero, all variances 1. Only correlations remain :)

All the PCs are linear combinations of the original variables.

Variable loadings of tell us how the variables are combined linearly to form
Variable loadings tell us which variables are “more” important.

PC1 PC1

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

Step 0/a: Drop the ID column
bc_data <- bc_data %>% select(-ID)

Step 0/b: Encode the diagnosis labels
bc_data <- bc_data %>% mutate(Diagnosis = ifelse(Diagnosis == "M", 1, 0))

Step 0/c: Separate features and labels
X <- bc_data %>% select(-Diagnosis)
y <- bc_data$Diagnosis

Step 1: Standardize the bc_data
scaler <- preProcess(X, method = c("center", "scale"))
X_scaled <- predict(scaler, X)

Step 2/a: Apply PCA
pca <- prcomp(X_scaled, center = TRUE, scale. = TRUE)

Step 2/b: Create a dataFrame with the first two principal components
pca_df <- as_tibble(pca$x[, 1:2]) %>%
 rename(PC1 = PC1, PC2 = PC2) %>%
 mutate(Diagnosis = y)

We now have everything we need to
answer PCA questions from our dataset :)

1. Do “similar” patients cluster together? (Benign/malignant)
2. Which original variable(s) are most useful when forming clusters?
3. How reliable is this new PCA approach?

PCA will help us “reduce dimensionality”

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

Step 0/a: Drop the ID column
bc_data <- bc_data %>% select(-ID)

Step 0/b: Encode the diagnosis labels
bc_data <- bc_data %>% mutate(Diagnosis = ifelse(Diagnosis == "M", 1, 0))

Step 0/c: Separate features and labels
X <- bc_data %>% select(-Diagnosis)
y <- bc_data$Diagnosis

Step 1: Standardize the bc_data
scaler <- preProcess(X, method = c("center", "scale"))
X_scaled <- predict(scaler, X)

Step 2/a: Apply PCA
pca <- prcomp(X_scaled, center = TRUE, scale. = TRUE)

Step 2/b: Create a dataFrame with the first two principal components
pca_df <- as_tibble(pca$x[, 1:2]) %>%
 rename(PC1 = PC1, PC2 = PC2) %>%
 mutate(Diagnosis = y)

We now have everything we need to
answer PCA questions from our dataset :)

Big question: can we find clusters of “similar” patients using PCA?

Similar? Diagnosis of breast cancer.

PCA questions:
1. How many features? How many PCs?

2. Which are the “best” PCs? [larger eigenvalues = better PC]

3. Which are the “important” variables forming the “best” PCs.

[eigenvectors of a PC give variable loadings]

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

Big question: can we find clusters of “similar” patients using PCA?

Similar? Diagnosis of breast cancer.

PCA questions:
1. How many features? How many PCs?

2. Which are the “best” PCs? [larger eigenvalues = better PC]

3. Which are the “important” variables forming the “best” PCs.

[eigenvectors of a PC give variable loadings]

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

1. Correlation matrix used. Dimension is , so we have PCs.

2. We use relative variability to judge PCs. Recall .

Variability of relative to all PCs:

30 × 30 30

Var(PC1) = λ1

PC1
λ1

∑30
i=1 λi

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

 Variability of relative to all PCs: PC1
λ1

∑30
i=1 λi

Pe
rc

en
ta

ge
 o

f t
ot

al
 v

ar
ia

tio
n

ex
pl

ai
ne

d
by

 to
p

10
 P

C
s

 Variability of relative to all PCs: PC2
λ2

∑30
i=1 λi

vars <- as_tibble(paste0("PC", seq(1:30))) %>%
 mutate(var = 100*(pca$sdev^2)/sum(pca$sdev^2)) %>%
 mutate(value = factor(value,
 levels = paste0("PC", seq(1:30))))

vars %>%
 head(10) %>%
 ggplot(aes(x = value, y = var)) +
 geom_bar(stat = "identity", fill = "white", color = "black") +
 theme_bw() +
 labs(x = "", y = "") +
 geom_text(aes(label = round(var, 2)), vjust = -0.5,
 color = "blue", fontface = "bold", size = 5)

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

 Variability of relative to all PCs: PC1
λ1

∑30
i=1 λi

Pe
rc

en
ta

ge
 o

f t
ot

al
 v

ar
ia

tio
n

ex
pl

ai
ne

d
by

 to
p

10
 P

C
s

Top ten (out of 30) PCs explain about 95% of
total variance in data!!

 Variability of relative to all PCs: PC2
λ2

∑30
i=1 λi

vars <- as_tibble(paste0("PC", seq(1:30))) %>%
 mutate(var = 100*(pca$sdev^2)/sum(pca$sdev^2)) %>%
 mutate(value = factor(value,
 levels = paste0("PC", seq(1:30))))

vars %>%
 head(10) %>%
 ggplot(aes(x = value, y = var)) +
 geom_bar(stat = "identity", fill = "white", color = "black") +
 theme_bw() +
 labs(x = "", y = "") +
 geom_text(aes(label = round(var, 2)), vjust = -0.5,
 color = "blue", fontface = "bold", size = 5)

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

The eigenvector corresponding to gives us variable
loadings:

PC1

PC1 = 0.33X1 + 0.71X2 + 0.62X3

 most importantX2

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

Features 7 and 8 were loaded the most for the
PC with maximum variability (44% of total)

loadings <- as_tibble(paste0("feature_", seq(1:30))) %>%
 mutate(loadings = pca$rotation[,1]) %>%
 arrange(loadings)

loadings <- loadings %>% mutate(value = factor(value, temp$value))
loadings %>% head(10) %>%
 ggplot() +
 geom_segment(aes(x = value, y = 0, xend = value, yend = loadings),
 color = "blue", size = 2) +
 geom_point(aes(x = value, y = loadings), color = "red", size = 2) +
 theme_bw() +
 labs(x = "", y = "Loadings of features magnitude matters only)",
 title = "Which variables are loaded into PC1? Top ten variables reported") +
 coord_flip() +
 scale_y_continuous(expand = c(0.01, 0))

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

View data using two features

View data using two PCs

Dataset: Breast Cancer Diagnostics
Biomedical dataset with 569 patients and 30 features (not 2)

View data using two features

View data using two PCs

Matrices in linear regression and PCA
- a brief recap

1. Matrix notation and algebra help simplify a lot of math

2. Linear regression can be formulated using matrices

1. Linear regression = projection = matrix multiplication

2. lm in R = matrix algebra

3. Principal components help with dimension reduction

1. Connected to eigenthings of underlying correlation matrix.

2. Variance explanation using PCs is very helpful.

Thank you :)
soumikp@umich.edu

mailto:soumikp@umich.edu

