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1. Linear regression
2. Principal component analysis
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Linear algebra review
(mostly matrices)

1. Linear regression [transpose and invert matrices]
2. Principal component analysis [eigen-things of matrices]

2024 Big Data Summer Institute, Ann Arbor.



To prepare for the class, | watched these two videos [~ 25 minutes]

Essential Matrix Algebra
for Neural Networks...

Key things to look out for:
- linear transformations
- matrix multiplication

- matrices and linear equations
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...Clearly Explained!!!

Start here and watch until 18:47!

Principal

Analysis
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Key things to look out for:
- PCA involves projections
- eigenproblem in PCA

- dimension reduction

Please watch the whole thing!


https://youtu.be/ZTt9gsGcdDo?si=7A-mfWCGlcZBcd32&t=144
https://youtu.be/ZTt9gsGcdDo?si=Ewdg7hhYU5yw0evm&t=1128
https://www.youtube.com/watch?v=ZTt9gsGcdDo
https://www.youtube.com/watch?v=FD4DeN81ODY

Agenda

On June 25 we’ll be talking about...

1. Dataset: Diagnostic Wisconsin Breast Cancer Database

2. Linear regression

1.  Writing data in matrix form
2. Estimation and inference using matrix algebra

3. Principal component analysis

1.  Why bother with PCA?
2. Implementation using matrix algebra



Dataset: Breast Cancer Wisconsin (Diagnhostic)
Biomedical dataset with 569 patients and 30 features

1. Dataset Composition: 569 patients with digitized images of breast mass.

2. Features: radius, texture, perimeter, area, smoothness, compactness,
concavity, concave points, symmetry, and fractal dimension of the cell

nuclel.

3. Classes: either malignant (212 cases) or benign (357 cases).

Aim: distinguish between malignant and benign breast cancer cases based on features.



# Load required libraries
library (tidyverse)
library (caret)

library (ggplot?2)

# Load the dataset

url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data"
columns <- c('ID', 'Diagnosis', pasteO('feature ', 1:30))
bc data <- read.csv(url, header = FALSE, col.names = columns)

view (bc data)




# Load required libraries
library(tidyverse)
library (caret)

library (ggplot?2)

# Load the dataset

url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data"
columns <- c('ID', 'Diagnosis', pasteO('feature ', 1:30))
bc data <- read.csv(url, header = FALSE, col.names = columns)

view (bc data)

You Should Know:

1.How many rows, how many columns?
2.\What does each row signify?
3.What does each column signify?
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“linear regression is simple math”



Linear regression

Data in matrix form

1.

= X[ +

is the vector of target values (dependent variable)

2. X is the matrix of input features (covariates)
3. [Jis the vector of coefficients (weights)

4.

IS the vector of errors (residuals)

Nn: number of patients

p: number of features

Yil=0+ piXy + ... + 5 e ™
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Linear regression

Data in matrix form

Y=X/+e¢€

1. Y is the vector of target values (dependent variable)
2. X is the matrix of input features (covariates)

3. [ is the vector of coefficients (weights)

4. € is the vector of errors (residuals)

Xy xpp o Xp

Y1
Y2 I X X 0 X
Y : * , X : ® .p
Y ..
. 1 Al An2 xnp



# # create a 4*4 matrix
X <- matrix(rpois(l6, 5), ncol = 4)
view (x)

# transpose of matrix
T (xX)

# inverse of matrix
solve (X)

You Should Know:

1. Transpose of a matrix
2. Inverse of a matrix




Linear regression

Estimation

Y = Xf + €, V(e) = 6.
Step 1: estimation and inference for //

B =X'X)"\(X'Y)

Step 2: predictions ¥ = X(X'X)~'(X'Y) = P, Y

Py, = X(X'X)"'X"is the projection matrix.

Step 3:residualse = ¢ = YV — ¥V = (I — Py)Y

[ — Py is the annihilator matrix.



STEP 1

Linear regression ibrary (ciayrecser o

Estimation # Set seed for reproducibility

set.seed (48103)

Generate synthetic data of size 100
true Y = 3 + 2*X

_ — 2
)7_'B¥;+'€’ XKG)"CT' epsilon variance = 4
Step 1: estimation and inference for [ <~ 100
~ o] st <- runif(n, min = 0, max = 10)
ﬁ=(XX) (X'Y) <- 3 4 2 * x 4+ rnorm(n, mean =

X STEP 2
Step 2: predictions ¥ = X(X'X)"'(X'Y) = P,Y

# Create a data frame
—Ixt; ot - data <- tibble(x = x, y =
Py, = X(X'X) X" is the projection matrix. ata ibble(x = %, y = y)

# Plot the data points
ggplot (data, aes(x = x, yv = vy)) +

~ geom point () +
Step3:residualse =¢ =Y —-Y = (- Py)Y labs (
title = "Data Points",
[ — Py is the annihilator matrix. x = "lInput Features (x)%,

= "Target Values (y)"
) +
theme minimal ()




STEP 1

# Load required libraries
library (tidyverse)

# Set seed for reproducibility
set.seed (48103)

Generate synthetic data of size 100
true Y = 3 + 2*X

epsilon variance 4

<- 100
<- runif(n, min = 0, max = 10)
<- 3 + 2 * x + rnorm(n, mean =

STEP 2

# Create a data frame
data <- tibble(x = x, y = V)

# Plot the data points
ggplot (data, aes(x = X, v =vV)) +

geom poilnt () +
labs (
title = "Data Points",
"Input Features (x)",
"Target Values (y)"

~minimal ()
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Obtaining estimated coefficients
Plotting fitted values
Plotting regression line

STEP 3

Matrix X, add column of ones for intercept
<- cbind(l, data$x)

Create the vector Y
<- datasy

Estimate the coefficient beta
<- solve(t(X) %*% X) %*% t (X)

Print the coefficients

# Predicted wvalues
data <- data %>% mutate(y pred = X %*% B)

# Plot the data points and the regression line
ggplot (data, aes(x X)) +
geom point (aes (y v)) +
geom point (aes(y = y pred), color = "red") +
geom line (aes(y = y pred), color = "blue'")
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STEP 3

Matrix X, add column of ones for intercept
<- cbind(l, data$x)

Create the vector Y
<- datasy

Estimate the coefficient beta
<- solve(t(X) %*% X) %*% t (X)

Print the coefficients

# Predicted wvalues
data <- data %>% mutate(y pred = X %*% B)

# Plot the data points and the regression line
ggplot (data, aes(x = x)) +
geom point (aes (y v)) +
geom point (aes(y = y pred), color = "red") +
geom line (aes(y = y pred), color = "blue'")



STEP 5

# Calculate residuals
data <- data %>%
mutate (residual = y - y pred)

# Plot residuals
ggplot (data,
aes(x = x, y = residual)) +
geom point () +
geom hline (yintercept = 0,
linetype = "dashed", color =
"red") +
labs (
] = "Residuals",
"Input Features (x)",
"Residuals"

Obtaining and plotting the residuals




STEP 5

# Calculate residuals
data <- data %>%
mutate (residual = y - y pred)

# Plot residuals
ggplot (data,
aes(x = x, y = residual)) +
geom point () +
geom hline (yintercept = 0,
linetype = "dashed", color =
"red") +
labs (
] = "Residuals",
"Input Features (x)",
"Residuals"

Residuals

Residuals

0.0

2.5

5.0
Input Features (x)

7.5

10.0




Everything is simpler in R!

Use 1m instead of matrix algebra

Im(y ~ x, data = data)

Y=X | W) = 62,
ﬁ+€ (6) ° Call:

Im(formula = vy ~ x, data = data)

Step 1: estimation and inference for //

N _ tv—1/vt Coefficients:
’B_(XX) (XY) (Intercept)

2.8960

Step 2: predictions ¥ = X(X'X)~'(X'Y) = P, Y

Py = X(X'X )_lXt IS the projection matrix. >

Step 3: residuals ¢ = ¢ = ¥V — V' = (I — Py)Y >

[ — Py is the annihilator matrix.




## regression of feature 1 using feature 2
Ilm(feature 1 ~ feature 2, data = bc data)

## plot of fitted regression line
bc data %>%
ggplot (aes (x = feature 2, y = feature 1)) +
geom point () +
geom smooth (method = "1lm", se = FALGSE,
color = "red")

feature; = [, + p feature; + €



## regression of feature 1 using feature 2
Ilm(feature 1 ~ feature 2, data = bc data)

## plot of fitted regression line
bc data %>%
ggplot (aes (x = feature 2, y = feature 1)) +
geom point () +
geom smooth (method = "1lm", se = FALGSE,
color = "red")

lm(feature 1 feature_z data bc data

Call
Im(formula feature_l feature_Z data bc data

Coefficients
Intercept feature 2
9.0099 0.20653

20

10

20

30




A nice segue for principal components analysis...



can you give me a joke on principal components for a seque in a
matrix algebra review session please

& Sure, here's a joke involving principal components:

Why did the data scientist go to therapy?

Because he had too many unresolved components and couldn't find his principal ones!

h O Ce

A ntee segue for principal components analysis...



can you give me a joke on principal components for a seque in a
matrix algebra review session please

& Sure, here's a joke involving principal components:

Why did the data scientist go to therapy?

Because he had too many unresolved components and couldn't find his principal ones!

h O Ce

A ntee segue for principal components analysis...

Provide additional feedback

Shouldn't have used Memory Don't like the style
Not factually correct Didn't fully follow instructions
Refused when it shouldn't have Being lazy Unsafe or problematic

Other

Helping OpenAl train their models better :)



Introduction to PCA

1. Statistical technigue used for dimensionality reduction.

2. Transforms the data into a new and “better” coordinate system.
A. Are there emerging patterns in the data?
B. What variables are “important” in the new system?

3. How “good” is this new coordinate system anyway?



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features

Using 30 features classify into malignant/benign class

> as_tibble(bc_data) %>% sample_n(10)
# A tibble: 10 x 31

Diagnosis |feature_1 feature_2 feature_3 feature_4 feature_5 feature_6 feature_7 feature_8 [feature_9 feature_10 feature_11

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

14.5 25. 95.8 656. .0884 .123 .101 0.0389 .187 .0634 .254
23. 19. 152. 1682 .0934 .128 .168 0.100 .150 .0548 WA
12. 18. 78. 458. .0923 .0718 .0439 0.0203 .170 .0592 .253
11. 17. 75. 429. .101 .0556 .0235 0.0155 172 .0578 .186
13. 23. 87. 573. .0925 .0675 .0297 0.0244 .166 .0580 .346
13. 19. 88. 593. .0868 .0633 .0134 0.0229 .156 .0567 .342
0
0
0
0
5

S

9. 21. 59. 264 .0924 .0560 .0400 .0128 .169 .0658 .301
23. 27 . 154. 1670 .0951 .168 .195 .124 .191 .0631 .06
15. 25. 102. 732. .108 .170 .168 .0875 .193 .0654 .439
11. 29. 74.9 415. .0936 .0857 .0716 .0202 0.180 0.0017 .314
# i 19 more variables: feature_12 <dbl>, feature_13 <dbl>, feature_14 <dbl>, feature_15 <dbl>, feature_16 <dbl>,

feature_17 <dbl>, feature_18 <dbl>, feature_19 <dbl>, feature_20 <dbl>, feature_21 <dbl>, feature_22 <dbl>,
feature_23 <dbl>, feature_24 <dbl>, feature_25 <dbl>, feature_26 <dbl>, feature_27 <dbl>, feature_28 <dbl>,
feature_29 <dbl>, feature_30 <dbl>
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Density curves for feature 8
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set.seed (48103)

as tibble (bc data) %>%
mutate (Diagnosis = factor (case when(Diagnosis ==

Diagnosis ==

\\M") ,

levels = c("B", “M"),

labels = c("Benign", "Malignant"))) %
ggplot (aes (x = feature 8, color = Dilagnosis)
geom density(aes(fill = Diagnosis), alpha
geom Jjitter(aes(y = 0, pch = Diagnosis),
scale color aaas() +
scale fill aaas () +
theme bw() +
theme (legend.position = "bottom") +
labs (y = "Density curves for feature 8")

° * 25 T R V?r . v fr‘ Taadt o AA $ A 4 A Ay A A A
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0.00 0.05 0.10 0.15 0.20
feature 8

Diagnosis | * | Benign | 4 | Malignant




Density curves for feature 8
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feature 8

Diagnosis | ¢ | Benign

Malignant

set.seed (48103)

as tibble (bc data
mutate (Diagnosi

\\M" ) ,

)

S

(@)
5>

levels = c("B", “M"
labels = c¢c("Benign",
feature 8§,
geom density(aes(fill = Diagnosis), alpha
0, pch = Diagnosis),

ggplot (aes (x =

geom Jjitter (aes

(y

scale color aaas() +
scale fill aaas() +

theme:bw() +

) 1

color = Dliagnosis)

S
¢}
factor (case when(Diagnosis == 0 ~ “B”,

Diagnosis == 1 ~

"Malignant"))

theme (legend.position = "bottom") +
labs (y = "Density curves for feature 8")
geom vline (xintercept = 0.0485, linetype

size

1,

color

"black")

)
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"dashed",




as tibble (bc data) $>%
mutate (Diagnosis = factor (case when(Dliagnosis ==
Diagnosis ==
wv" ) ,
levels = c("B", “M"),
labels = c("Benign", "Malignant"))) %>%
ggplot (aes (x = feature 8§, y feature 7/,

color = Diagnosis)) +
geom point (aes(pch = Diagnosis), size = 2) +
scale color aaas() +
scale fill aaas() +
theme bw() +
theme (legend.position = "bottom") +
labs(y = "feature 7", x = "feature 8")
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as tibble (bc data)
mutate (Diagnosis

"),
levels
labels

color
geom point (aes (p
scale color aaas

scale fill aaas(
theme bw() +

theme (legend.pos
labs(y = "feature 7", x = “feature 8") +

geom segment (aes (
colo
line
geom segment (aes (
0.1),
colo
line

factor (case when(Diagnosis ==
Diagnosi

— C("B"’ “M"),
= c("Benign", "Malignant"))) %>%
ggplot (aes (x = feature 8, y

= feature 7,

= Dlagnosis)) +

ch = Diagnosis), size = 2) +
() +

) +

ition = "bottom") +

x = 0, xend = 0.05, y = 0.1, yend

r = "green", size = 2,
type = "dashed") +

x = 0.05, xend = 0.05,

r = "green", size = 2,
type = "dashed")
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as tibble (bc data)
mutate (Diagnosis factor (case when(Diagnosis ==
Diagnosis
\\M" ) ,
levels = c("B", “M"),
labels = c("Benign", "Malignant"))) %>%
ggplot (aes (x = feature 8, y feature 7/,

color = Diagnosis)) +
geom point (aes (pch = Dilagnosis), size = 2) +
scale color aaas() +

scale fill aaas() +
theme bw() +
theme (legend.position = "bottom") +
labs(y = "feature 7", x = “feature 8") +
geom segment (aes(x = 0, xend = 0.05, y = 0.1, yend
color = "green", size = 2,
linetype = "dashed") +
geom segment (aes(x = 0.05, xend = 0.05,
0.1),
color = "green", size = 2,
linetype = "dashed")

More than three dimensions? :(
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PCA will help us “reduce dimensionality”

1. Do “similar” patients cluster together? (Benign/malignant)
2. Which original variable(s) are most useful when forming clusters?
3. How reliable is this new PCA approach?



PCA In two variables: step 1

Make life easier: center and scale

0.4 1

0.31

feature 7
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Intuition: Data points are in the same “relative” position as before, should not hurt clustering




Introduction to PCA

MO data MO PROBLEMS @

1. Statistical technique used for dimensionality reduction.

2. Transforms the data into a new and “better” coordinate system.
A. Are there emerging patterns in the data?
B. What variables are “important” in the new system?

3. How “good” is this new coordinate system anyway?



Which coordinate system is the best?

PCA in two variables: step 2 -

Create “new coordinate system”

Must create a new pair of axes.
Which axes to pick?

feature 7

1

feature 8




PCA in two variables: step 2 -

Create “new coordinate system”

Must create a new pair of axes.
Which axes to pick?

Fix a point * and calculate
perpendicular distance of point from
a given line

feature 7

Which coordinate system is the best?

N
1

feature 8



Which coordinate system is the best?

PCA in two variables: step 2 -

Create “new coordinate system”

Must create a new pair of axes.
Which axes to pick?

N
1

feature 7

Fix a point * and calculate
perpendicular distance of point from
a given line

Pick that line which has the least

distance from all points (not just *)
to the line.

-1 4

feature 8



Which coordinate system is the best?

PCA in two variables: step 3 -

Complete “new coordinate system”

The first “good” line is the first PC,
or P Cl - |

2 %3
/
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feature 8



Data after rotation

PCA in two variables: step 3

Complete “new coordinate system”

The first “good” line is the first PC, L 5o
or PC,.

feature 7

Repeat the line-finding process
again, excluding C, to obtain PC,. -

PC,5 will ALWAYS be perpendicular
to PCI

Finally: rotate to avoid neck pain :)

o—--_-______-____-____—_______-

2 4 6
feature 8



Data after rotation

Okay, got the PCs

Now what??

PC, and P(, identify the directions along which the
variation in the data is maximal.

feature 7

Reduces the dimensionality of the data while
retaining most of the variation.

We just used eigenthings to find PCs! -

o—________________-_____—_______-

2 4 6
feature 8



Eigenthings of matrices

Eigenvalues and eigenvectors

matrix

/

y = AX

/

vector




Eigenthings of matrices

Eigenvalues and eigenvectors

For a square matrix A, and a (hon-zero) vector X where the matrix A is
used to transform X to y: y = AX.



Eigenthings of matrices

Eigenvalues and eigenvectors

For a square matrix A, and a (hon-zero) vector X where the matrix A is
used to transform X to y: y = AX.

If y is a scaled version of X (y = AX for some scalar A), then we can say:

“X is an eigenvector of A and A is the corresponding eigenvalue”

For a p X p square matrix we have p eigenvalue+eigenvector pairs.




Eigenthings of matrices

Eigenvalues and eigenvectors

For a square matrix A, and a (hon-zero) vector X where the matrix A is
used to transform X to y: y = AX.

If y is a scaled version of X (y = AX for some scalar A), then we can say:

“X is an eigenvector of A and A is the corresponding eigenvalue”

For a p X p square matrix we have p eigenvalue+eigenvector pairs.

If you give me a ‘good’ matrix, | can give you it’s eigenthings using singular value decomposition (SVD)



A specific linear transformation matrix exists

Other vectors eigen vectors of that matrix
l i

.

./c‘ \\. - q\\
= |

~
c—" | ' h
| -y 7))
y : ' 4 ) \
£ ™™ 4
. o
o

AW




Okay, got the PCs

Now what??




Okay, got the PCs

Now what??

Remember we scaled and centered our data®?

All means zero, all variances 1. Only correlations remain :)



Okay, got the PCs

Now what??




Okay, got the PCs

Now what??

All the PCs are linear combinations of the original variables.

Variable loadings of PC, tell us how the variables are combined linearly to form PC,
Variable loadings tell us which variables are “more” important.



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

# Step 0/a: Drop the ID column
bc data <- bc data %>% select (-1ID)

# Step 0/b: Encode the diagnosis labels
bc data <- bc data %>% mutate(Diagnosis = i1felse(Diagnosis == "M", 1, 0))

# Step 0/c: Separate features and labels
X <- bc data %>% select (-Diagnosis)
y <- bc data$Diagnosis

# Step 1: Standardize the bc data We now have e\{erythlng we need to
sesler oo prERrocess [, mERied = @ftesmtest, TECRLET)) answer PCA questions from our dataset :)

X scaled <- predict (scaler, X)

# Step 2/a: Apply PCA
pca <- prcomp (X scaled, center = TRUE, scale. = TRUE)

# Step 2/b: Create a dataFrame with the first two principal components
pca df <- as tibble(pcaSx[, 1:2]) $>%

rename (PC1 = PCl, PC2 = PC2) %>%

mutate (Diagnosis = V)



We now have everything we need to
answer PCA questions from our dataset :)

1. Do “similar” patients cluster together? (Benign/malignant)
2. Which original variable(s) are most useful when forming clusters?
3. How reliable is this new PCA approach?



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

Big question: can we find clusters of “similar” patients using PCA?
Similar? Diagnosis of breast cancer.

PCA questions:

1. How many features? How many PCs?

2. Which are the “best” PCs?

3. Which are the “important” variables forming the “best” PCs.



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

Big question: can we find clusters of “similar” patients using PCA?
Similar? Diagnosis of breast cancer.

PCA questions:
1. How many features? How many PCs?
2. Which are the “best” PCs? [larger eigenvalues = better PC]

3. Which are the “important” variables forming the “best” PCs.
leigenvectors of a PC give variable loadings]




Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

1. Correlation matrix used. Dimension is 30 X 30, so we have 30 PCs.

2. We use relative variability to judge PCs. Recall Var(PC,) = 4;.

Ay
30
Zi—l A

Variability of PC; relative to all PCs:




Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

44.27
_— | A
. Variability of PC relative to all PCs: ——
vars <- as tibble (pastel ("PC", seqg(l:30))) %>% }Ekzlﬁi
mutate (var = 100* (pcaS$sdev”"2) /sum(pca$sdev”"2)) %$>%
mutate (value = factor (value, ﬂz

levels = pasteO("PC", seqg(1:30)))) Variability of PC2 relative to all PCs:

w
o
1

30
}:ﬁzlﬂi

vars %>%
head (10) %>%

ggplot (aes (x = value, y = var)) +

geom bar (stat = "identity", fill = "white", color = "black") +

theme bw() +

labS (X — nn, y = nn) + o -
geom text (aes(label = round(var, 2)), vjust = -0.5, '
color = "blue", fontface = "bold", size = 5H)

9.39

—
o
1

6.6

5.5

4.02

2.25

Percentage of total variation explained by top 10 PCs

1.59 1.39 1.17

o
1

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCY PC10



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

44.27
A
C e . 1
0 . Variability of PC relative to all PCs: ——
O
vars <- as tibble (pastel ("PC", seqg(l:30))) %>% - Zizl /li
mutate (var = 100* (pcaS$sdev”"2) /sum(pca$sdev”"2)) %$>% =
mutate (value = factor (value, 8_ . N . /12
levels = paste0("PC", seq(1:30)))) = Variability of PC, relative to all PCs: 0
0 .
vars %$>% ol Zi=1 /ll
head (10) %>% _g
ggplot (aes (x = value, y = var)) + @©
geom bar (stat = "identity", fill = "white", color = "black") + <
theme bw() + o Top ten (out of 30) PCs explain about 95% of
labs (X — 1) ", y — 1) ") _I_ -9 o _ .
geom text (aes(label = round(var, 2)), vjust = -0.5, P~ 18.97 total variance in data!!
color = "blue", fontface = "bold", size = 5) =
>
o
S
qqo_) 104 9.39
% 6.6
= 5.5
8 4.02
= 2.25
DG_J 1.59 1.39 117

o
1

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCY PC10



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

The eigenvector corresponding to PC,; gives us variable
loadings:

X, most important



feature_4 -

feature 24 -

feature 3 4

feature_21

feature_27 -

feature 23 A

feature 6 -

feature 28 -

feature 7 4

feature 8 -

Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

Which variables are loaded into PC1? Top ten variables reported

0.25 0.20 0.15 0.10 0.05 0.00
Loadings of features magnitude matters only)

Features 7 and 8 were loaded the most for the
PC with maximum variability (44% of total)

loadings <- as tibble (pastel ("feature ",
mutate (loadings = pcaS$rotation[,1]) 3%>%
arrange (loadings)

seqg(1:30))) 3>%

loadings <- loadings %>% mutate (value = factor (value, tempS$Svalue))
loadings %>% head (10) %>%
ggplot () +
geom segment (aes(x = value, y = 0, xend = value, yend = loadings),
color = "blue", size = 2) +
geom point (aes(x = value, y = loadings), color = "red", size = 2) +
theme bw() +
labs(x = "", y = "Loadings of features magnitude matters only)",
title = "Which variables are loaded into PC1l? Top ten variables reported")
coord flip() +
scale y continuous (expand = c¢(0.01, 0))

_|_



Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

View data using two features




Dataset: Breast Cancer Diagnostics

Biomedical dataset with 569 patients and 30 features (not 2)

View data using two features
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Matrices in linear regression and PCA

- a brief recap

1. Matrix notation and algebra help simplify a lot of math
2. Linear regression can be formulated using matrices
1. Linear regression = projection = matrix multiplication
2. 1lmin R = matrix algebra

3. Principal components help with dimension reduction
1. Connected to eigenthings of underlying correlation matrix.
2. Variance explanation using PCs is very helpful.



Thank you )
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