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Methodology motivated by an 
epigenetic question



• Genes associated with blood pressure: 
ATP2B1, FGF5, and PRDM8.
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• Genes associated with blood pressure: 
ATP2B1, FGF5, and PRDM8.


• Gene expression controlled by methylation.


• Methylation influenced by external features.


• Questions:  


1. EpiGWAS for BP? 


2.  or ?DNAm → BP BP → DNAm

Does  or ?DNAm → BP BP → DNAm
Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort study
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Deliverables



1. Asymmetric predictability: well-justified framework for studying statistical 
asymmetries between cause and effect.
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1. Asymmetric predictability: well-justified framework for studying statistical 
asymmetries between cause and effect.  

2. New information theory-based measure: Directed Mutual Information (DMI).


A. DMI can test for independence.


B. DMI can quantify and estimate “asymmetries” between cause and effect.

Does  or ?X → Y Y → X
Directed Mutual Information (DMI)
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Symmetric!

MI(X, Y) = EXY [log cXY]
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Study independence with
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Depends only on copula  
MI

cXY
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Entropy decomposition equation: 


     + 
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Some information theoretic concepts

Conditional entropy:





Asymmetric!

H(X |Y) = EXY [−log
fXY

fX ]

Information 
needed to predict  if 

we know 
X

Y



Comparing conditional entropies
Symmetric entropy decomposition

H(X)H(Y)
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Comparing conditional entropies
Asymmetric entropy decomposition

H(X)
H(Y)

MI(X, Y)                 H(X |Y) H(Y |X)                MI(X, Y)

Asymmetry: “Less information needed to predict ”Y given X
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Postulate: If , the density  and the function  are “independent”.

Y = g(X) + ϵ

X → Y fX g

Asymmetric predictability
Causality in information space

Step 2: “peaks of  do not coincide 
with regions of large slope of ”


fX
g

Cov [log (g′￼  

Step 3: after some more math…


If  , we haveX → Y
H(X |Y) = H(Y |X) +  non-negative value

References:

Janzing, D., et al. (2012). Information-geometric approach to inferring causal directions. 
Daniusis, P., et al. (2012). Inferring deterministic causal relations.
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Definition and properties
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ER(X |Y ) > ER(Y |X)
⟺ H(X |Y ) > H(Y |X)
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Estimation and inference using 
DMI
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nuisance parameter estimation.



1. Estimate density functions (“nuisance parameter”) using one split


2. Evaluate entropy and mutual information using other split 

Directed Mutual Information (DMI)
Estimation and inference

Cross-fitting yields improved empirical 
performance.
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 permit test of independence 

using permutation.
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1. Assuming the density functions are bounded, when , we 
have  


2. Assuming  , we have 

min(n1, n2) → ∞
̂DMI(X |Y)

p
→ DMI(X |Y) .

MI ≠ 0, min(n1, n2) → ∞ n2 (Δ̂ − Δ) D→ N(0,σ2
Δ) .

Directed Mutual Information (DMI)
Theoretical guarantees

Sign of  informs 

 CI allows for calibration

Δ̂ X → Y
(95%)



New epigenetic insights using 
DMI



• Cohort of 525 children of age 10 - 18 years in the ELEMENT cohort. 


• 3 candidate genes: ATP2B1, FGF5, and PRDM8.


• Mildly correlated methylation sites: 21 for ATP2B1, 21 for FGF5, and 51 sites for PRDM8. 
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• Cohort of 525 children of age 10 - 18 years in the ELEMENT cohort. 


• 3 candidate genes: ATP2B1, FGF5, and PRDM8.


• Mildly correlated methylation sites: 21 for ATP2B1, 21 for FGF5, and 51 sites for PRDM8. 


1. Test for association between DNAm site and BP for a given gene. 


2. Aggregate all DNAm-findings using Cauchy combination test for each gene. 


3. In DNAm sites associated with BP, check if DNAm  BP or BP  DNAm.→ →

Does DNAm  BP or BP  DNAm→ →
Application of DMI to methylation studies



Finding 1: DNAm site 
#17564205 in 

ATP2B1

• Strongly associated 
with diastolic BP.


• Strong signal to drive 
gene-wide association  
with DBP.


• Next: check DNAm  
BP or BP  DNAm? 

→
→



Finding 2: DNAm 
site #125287 in FGF5

• Strongly associated 
with systolic BP.


• Strong signal to drive 
gene-wide association  
with SBP.


• Next: check DNAm  
BP or BP  DNAm? 

→
→



Finding 3: DNAm site 
#7462804 in PRDM8

• Strongly associated 
with systolic BP.


• Strong signal to drive 
gene-wide association  
with SBP.


• Next: check DNAm  
BP or BP  DNAm? 

→
→



1. No asymmetry detected: #7462804 (PRDM8) and #12528713 (FGF5)


2. Asymmetry detected: Diastolic BP  #17564205 in ATP2B1.→

Finding 4: DBP  #17564205 in ATP2B1→



Thank you for your 
time!

soumikp@umich.edu

mailto:soumikp@umich.edu
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