
Estimating densities: Using advances made by O’Brien et al. (2016), we estimate the underlying joint and marginal densities using
Fast-Fourier transformations. This is many magnitudes faster than classical bandwidth-based density estimation, while maintaining
comparable error performance, making our method scalable. Estimated densities are used to obtain estimates of 𝑫𝑴𝑰 and 𝚫.

Estimating 𝑫𝑴𝑰 and 𝚫: We use a data-splitting technique for estimation and valid inference, shown by the schematic below:

Theoretical results
• Consistency: Assuming the density functions are bounded below and above, with min 𝑛!, 𝑛" → ∞, we get consistent estimates of
𝑫𝑴𝑰(𝑿|𝒀) and 𝑫𝑴𝑰(𝒀|𝑿).
• Asymptotic normality: In addition to the assumptions above, assuming𝑀𝐼 𝑋, 𝑌 ≠ 0, withmin 𝑛!, 𝑛" → ∞, we have

√𝒏𝟐 9𝑫𝑴𝑰 𝑿|𝒀 − 𝑫𝑴𝑰(𝑿|𝒀) → 𝑵(𝟎, 𝝈𝟏𝟐) and √𝒏𝟐 >𝚫 − 𝚫 → 𝑵 𝟎, 𝝈𝟐𝟐 .
Both 𝜎! and 𝜎" may be estimated using standard Monte Carlo tools.

Mutual information, denoted by 𝑴𝑰(𝑿, 𝒀): for bivariate 𝑋, 𝑌
with joint (marginal) densities 𝑓%& (𝑓% and 𝑓& ), is used to
investigate the strength of association between 𝑋, 𝑌 , given by:

𝑀𝐼 𝑋, 𝑌 = 𝐸%& log
𝑓%& 𝑋, 𝑌
𝑓% 𝑋 𝑓& 𝑌

.

Joint and marginal entropies: the joint entropy is given by
𝐻 𝑋, 𝑌 = −𝐸%&[log 𝑓%& 𝑋, 𝑌 ] and the marginal entropies
are similarly given by 𝐻 𝑋 and 𝐻 𝑌 . The conditional entropy
of 𝑌 on 𝑋 is given by 𝐻 𝑌 𝑋 = 𝐻 𝑋, 𝑌 − 𝐻 𝑋 .

𝐻 𝑋, 𝑌 = 𝐻 𝑋 𝑌 + 𝐻 𝑌 = 𝐻 𝑋 𝑌 +𝑀𝐼 𝑋, 𝑌 + 𝐻 𝑌 𝑋 = 𝐻 𝑋 + 𝐻(𝑌|𝑋)

Entropy Ratio, given by 𝑬𝑹(𝑿|𝒀) : 𝐻(𝑌|𝑋) measures
uncertainty when using 𝑋 as the predictor and 𝑌 as the
response. 𝐻 𝑌 𝑋 < 𝐻(𝑋|𝑌) reveals 𝑋 as the better predictor.

𝐸𝑅 𝑋 𝑌 =
exp 𝐻(𝑋|𝑌)

exp 𝐻(𝑋|𝑌) + exp 𝐻(𝑌|𝑋)
.

𝐸𝑅 𝑋 𝑌 > 𝐸𝑅 𝑌 𝑋 reveals 𝑋 as the better predictor than 𝑌.

Directed mutual information: We define 𝑫𝑴𝑰 𝑿 𝒀 =
𝑴𝑰 𝑿, 𝒀 ×𝑬𝑹 𝑿|𝒀 and 𝚫 = 𝑫𝑴𝑰 𝑿 𝒀 - 𝑫𝑴𝑰 𝒀 𝑿 .

• 𝑫𝑴𝑰 𝑿 𝒀 = 𝟎 = 𝑫𝑴𝑰(𝒀|𝑿)⟺ 𝑋 and 𝑌 are independent.
• 𝚫 > 0 ⟺ 𝑬𝑹 𝑿 𝒀 > 𝑬𝑹 𝒀 𝑿 . This reveals 𝑋 as the better
predictor than 𝑌.

We use a Fourier transformation-based method to estimate
the 𝐷𝑀𝐼 and use data-splitting for valid statistical inference.
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• Discovery of causal relationships from observational data is a cornerstone of scientific research. Given bivariate 𝑿, 𝒀 , a fundamental question is whether 𝑿 causes 𝒀 or, alternatively, if 𝒀 causes 𝑿.

• Even under many simplifying assumptions: no confounding, no feedback loops, and no selection bias, a structured investigation of causal relationships in bivariate data is a notoriously hard problem.

• In absence of a-priori knowledge, we investigate statistical patterns to find potential causal directions. In our new framework, asymmetry is viewed as a low-dimensional representation of causality.

• Most measures mask asymmetry by implicitly assuming that 𝑋 and 𝑌 are equally dependent on each other, which might be false. Our framework detects association along with asymmetry in 𝑿, 𝒀 .

• Using Shannon’s information theory framework, we propose a causal discovery statistic that quantifies and estimates ”predictive asymmetry” in 𝑋, 𝑌 in a computationally fast and robust manner.

• Our statistic is called the Directed Mutual Information (𝑫𝑴𝑰). 𝑫𝑴𝑰 scales the popular mutual information (𝑴𝑰) by a factor called the entropy ratio (𝑬𝑹), capturing predictive asymmetry in 𝑿, 𝒀 .

• We establish key large-sample properties of our framework by developing a new data-splitting inference technique and evaluate its performance through simulation studies and a real data example.

A. INTRODUCTION

B. FORMULATION OF THE DMI FRAMEWORK C. ESTIMATION AND THEORETICAL RESULTS
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Estimated quantities:
&𝐻(𝑋, 𝑌), &𝐻(𝑋), &𝐻(𝑌)

Intermediate estimates:

,𝑴𝑰 𝑿, 𝒀 = &𝑯 𝑿 + &𝑯 𝒀 − &𝑯(𝑿, 𝒀)
&𝑯 𝑿 𝒀 = &𝑯 𝑿, 𝒀 − &𝑯 𝒀
&𝑯 𝒀 𝑿 = &𝑯 𝑿, 𝒀 − &𝑯 𝑿

Final estimates: 

5𝑫𝑴𝑰 𝑿|𝒀 = ,𝑴𝑰 𝑿, 𝒀 ×,𝑬𝑹 𝑿|𝒀
5𝑫𝑴𝑰 𝒀|𝑿 = ,𝑴𝑰 𝑿, 𝒀 ×,𝑬𝑹 𝒀|𝑿
&𝚫 = 5𝑫𝑴𝑰 𝑿|𝒀 − 5𝑫𝑴𝑰 𝒀|𝑿

Data split 𝑫𝟐
Sample size 𝒏𝟐

Data split 𝑫𝟏
Sample size 𝒏𝟏

•We investigate DNA methylation (DNAm) and blood pressure (BP) in 21 correlated
methylation sites of a candidate gene (namely, ATPB21) in the Early Life Exposures in
Mexico to Environmental Toxicants (ELEMENT) cohort (Hernandez-Avila et al., 1996).
•As 𝑯𝟎: 𝑫𝑴𝑰 = 𝟎 is a test for independence, we perform a permutation-based test of
independence for all 21 methylation sites with Systolic and Diastolic BP (SBP/DBP).

• p-values obtained from ATPB21 are aggregated using the Cauchy combination test
(Liu and Xie, 2019). Overall, DNAm of ATP2B1 is associated with DBP (p-value
0.042) at the 5% level of significance. One methylation site (17564205) is noted
to be significantly associated with DBP after applying Bonferroni correction.
•We examine 𝑫𝑴𝑰 𝑫𝑵𝑨𝒎 𝑫𝑩𝑷 −𝑫𝑴𝑰 𝑫𝑩𝑷 𝑫𝑵𝑨𝒎 and note that DBP exhibits
predictive asymmetry over the site 17564205, with /𝜟 𝟗𝟓% 𝑪𝑰 =
− 𝟐. 𝟏𝟒 −𝟑. 𝟖𝟓,−𝟎. 𝟒𝟐 . Our 𝐷𝑀𝐼 framework unearths a new causal hypothesis for
further investigation.

CpG site: 17564205
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(A1) CCT−based combined p−value for association of ATP2B1 gene with DBP: 0.042
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(A2) CCT−based combined p−value for association of ATP2B1 gene with SBP: 0.708

Asymmetry detected: −2.14 ( −3.85, −0.42)ATP2B1
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(B) Examining estimated ∆̂ (95% CI) for asymmetric predictability of CpG site 17564205 in ATP2B1 gene that is significantly associated with diastolic BP. 

Subplots (A1) − (A2) reveal gene−level and CpG site−level association with systolic (SBP) and diastolic blood pressure (DBP) with dotted red line signifying gene−level Bonferroni−adjusted
threshold of 5% level of significance.
Subplot (B) reveals asymmetric predictability of CpG sites of target gene ATP2B1 that are significantly (Bonferroni−adjusted) associated with SBP or DBP.

Association and asymmetric predictability between CpG sites of target gene ATP2B1 and blood pressure in ELEMENT cohort study.

D. DATA APPLICATION: EPIGENETIC CAUSAL DISCOVERY
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